
!-MOO 922 IDL (INTERFRCE DESCRIPTION LANGUAGE) BACKGROUND AM IVA
STATUS(U) CARNEGIE-NELLON UNIV PITTSBURGH PA SOFTINE
ENGINEERING INST.. D L STONE ET AL. DEC 87

UNCLRSSIFIED CNAAI-97-TR-47 ESD-TR-07-219 F/G 12/5 NLl eaeeaaaaaaEI

11l11111w
I~~hI~r MSe
11111

211 5 W_

*EI5E 1*4

Technical ReportCMU/SEI-87-TR.-47 i'

ESO-TR-87-210 %.

Carneg ie-Melon Universt, .ri

Software Engineering Institute

4\4

1P

'F

IDL: Background and Status I,

Donald L. Stone
John R. Nestor

N December 1987 t"IC

N LECTE, FES 0 a s-W

COII

D
tMUIN STAMWE

,fOr Publi

* 58 01 113
Ire. - -'.

___ %- .-

Technical Report
CMU/SEI-87-TR-47

ESD-TR-87-210

December 1987

IDL: Background and Status

Donald L. Stone
John Nestor

Accesion For

NTIS CRA&I '
DTIC TAB "
Unanno,;: ced 0
Justif,catcn . .

By

,"

Di~t

Approed for public release.
Distribution unlimited.

Software Engineering institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEt Joint Program Office
ESD/XRS
Hanscom AFB. MA 01731

The ideas and findings in this report should not be construed as an off icial DoD
position. It is published in the Interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shinglerr
SEl Joint Program Office ,J

This work was sponsored by the U.S. Department of Defense.

This document is avafthls through 1he Defense Tchnical Information Cente. DTIC provides access io and transfer of
scientific and lischnical information for DoD personinel. DoD contractors and potential contraictors, and other U.S.
Govwnmeni agency personnel and their contractors. To obtain a copy, please contact OTIC diretly: Defense Technical
Informationr Center, Attn: FDRA. Carneron Station, Alexandria, VA 2230446145.

Copies of this document are also availale through the National Technical Information Seivicesi. For information on
orderin. plese contact NTIS directly: National Technical Information Services. U.S. Department of Commerce,
Springield, VA 22161.

IDL: Background and Status
Abstract. This paper presents an overview of the Interface Description Language
(IDL). We describe the language and its history. We also discuss the status of the IDL
community

1. What Is IDL?
Programming environments contain sets of tools that communicate with one another. Often the
shared data is highly structured and extremely complex. ",The Interface Description Language
(IDL) provides a mechanism by which the abstract properties of complex structured data may be
specified precisely. Abstract specifications can be mapped to multiple target languages running CA

on many kinds of computer systems. This mechanism permits data to be communicated between
programs, or parts of a single program, safely and efficiently.

The range of existing tool communication methods can be illustrated by two examples. First, one
may specify a single central database shared by all the tools in the environment. This approach,
use of a single powerful data representation, is that taken by the Gandalf programming
environment [41. Alternately, one may specify a particular data structure as the interface between
each pair of tools. By providing a powerful mechanism for specifying and generating data struc-
tures, IDL enables the system designer to tailor tool interfaces to specific needs.

Programs In which Interfaces are specified in IDL ommunicate by means of readerwiter pairs.
An Interface consists of a reader, which gets data, a writer, which sends data, and some ex-
change representation. A writer transforms data In the Internal form of ts process to the ex-
change representation. A reader then transforms this representation into the internal form of its
own process.

IDL supports a common exchange representation, the ASCII External Form. This form can de-
scribe data from any IDL specification independent of language or machine, but it Is often in-
efficient. However, In practice the ASCII form serves as a lowest common denominator represen-
tation. An IDL translator can also support more efficient binary exchange forms.

The core of IDL Is a language for specifying the abstract properties of data structures. The
structures specified are typed, attributed, directed graphs. Each node in the graph has a collec-
tion of attributes. Attributes can have types. integer, rational, boolean, string, set, sequence,I
private or node. Private types are a hook allowing the tool builder to specify arbitrary structures.
The nodes form a graph because attributes may reference other nodes.

IDL delines the notion of a dass. A class is a grouping of nodes that share a set of common
attributes. Operations that reference only these common attributes may be defined on classes. U
The class mechanism can be used to add a kind of generic capability to target languages lacking
such capability. Also, classes may be further grouped, forming a class structure. An extremely
Important property of this structure is that it need not be hierarchical.

CM U/S EI-87-TR-471

, .,

4..

An IDL translator maps an abstract IDL specification to a concrete specification in some target
language. In building a translator, a number of Issues are left to the discretion of the implemen-
tor. Among these:

" How does the IDL type model map onto the target language?
1%" How does the application programmer manipulate objects within the IDL type model?

* How much runtime support Is generated?

In addressing these Issues, an IDL Inplementor can achieve tremendous leverage. Since it need
never be read by humans, generated code may be written In an unreadable and unmodifiable
style, in order to be as efficient and effective as possible. Furthermore, generated code may be
arbitrarily machine and language specific.

An IDL tool presents another benefit to the application programmer. In general, interfaces to data
structures and runtime support constitute a sizable portion of systems. An IDL tool will generate
this code correctly. Furthermore, the runtime support may use highly-tuned tools. For instance,
beneath the type manager, one could put a highly-tuned storage manager and garbage collector,
which then would be incorporated into every system built with IDL. When an entire toolset is

based on IDL, these secondary benefits can be significant.

In addition to the language for describing data structures, IDL contains several other concepts.
Among these is a language for specifying assertions. This language allows us to make state-
ments about data structures such as "all the back pointers in a data structure are set correctly."
Another piece of IDL, the process model, allows us to make statements about how processes
interact, such as "they communicate in main memory" or "they pass some external representation
through files." Assertions and process statements give us more information to reason about
systems and to build tools to support interactions among pieces of systems.

Finally, IDL s formally defined in denotational semantics. In the past, this has had a very prag-
matic effect. Proposed changes and implementation decisions were weighed against the require-
ments of the formal definition. In the long run, this has led to a cleaner, more coherent language.

2. History of IDL
The Production Quality Compiler-Compiler (P0CC) project at Carnegie-Mellon University (CMU)
[6) developed a notation called LG (for Linear Graph) to describe the data structures passed
between phases of the compiler [101. The project also developed a set of tools for processing the
notation. However. LG had a number of drawbacks. It was difficult to use, and It was strongly
oriented towards the particular Implementation language (BLISS (13]) and host machine (the
PDP-10) used by the P0CC project. Nonetheless, t was a very useful tool.

At CMU, during 1979 and 1980, a consensus developed that a generalized data definition Ian-
guage was needed to meet the needs of several different projects, which were Implemented in
different languages and running on different computer systems. During this same period, the
community of Implementors of the Ada programming language developed a strong interest in
being able to share intermediate program representations.

2 CMU/SEI-87-TR-47 ,

,..,

In late 1980, there were two major candidates for a common intermediate representation of Ada
programs: TCOLA&, developed at Carnegie-Melon University, and AIDA, developed at the Uni-
versily of Karsuhe. In December 1980. a meeting was held at SofTech, Inc., to discuss these
two representations; at this meeting, it was decided to try and merge the two notations. In
January 1981, a one-week design session was held at Eglin Air Force Base. The result of this
meeting was a new Intermediate representation, Diana [3].

As a shared representation, Diana needed precise specification. Previously. John Nestor, David
Lamb, and William Wuif had defined an initial design of IDL. At the Eglin meeting, the partic-
ipants revised this design and used it as Diana's specification language.

Soon afterward, the IDL reference manual [7] appeared, containing the first version of the formal
definition. This was followed by a draft revision [8] containing only minor changes. At that time,
the first inIplementation of an IDL translator was built at CMU. Later, David Lamb's PhD thesis
[5] investigated the practicality of using IDL to build large systems and explored many of the

design Issues.

In 1981, Wulf and Nestor founded Tartan Laboratories, using IDL as a central technical basis for
their compiler building tools. Tartan has continued to support work on IDL, including a revision of

the formal definition [11, work on extensions to attribute grammars using IDL [9], and a runtime
system built by Joseph Newcomer.

Several other sites have implemented IDL translators. Intermetrics has two Implementations
supporting their Ada development effort. A number of other companies building Ada compilers
have adopted Diana and built partial translators for support. More recently, a Diana-like language
called Ivan, also specified in IDL, has appeared as part of the VHDL system [2]. :1,

Currently, the University of North Carolina at Chapel Hill (UNC) is using IDL as the basis of an
integrated toolset [11]. To support this effort, they are Implementing an IDL translator targeted to
C, Pascal, Modula-2 and Ada. They are the first group to work extensively with parts of IDL other
than the data structure description language. They have worked with both the assertion language
and the process model. Their work using the whole of IDL is driving many of the changes and
extensions currently under consideration.

In January 1986, the Software Engineering Institute of Carnegie-Mellon University (hereafter the
SEI) Initiated a project on IDL as part of a larger focus on manipulation of data in programming
environments. The major product of the project will be a book containing

* A revised language reference manual incorporating changes and extensions to IDL.

* A guide to implementors describing experiences and containing notes about Im-
plenenting IDL efficey and effectively.

In May 1986. the SEI and the Computer Science Department of UNC cosponsored a workshop
on IDL The workshop brought together people who have been significant contributors to IDL and
lOL4ke technologies. The objective was to exchange ideas and open lines of communication for
future work.

S5i0-;1'-.Tn.7 3

3. Status of IDL
In preparation for the IDL workshop, the SEI project surveyed a number of users and Implemen-
tor of IDI and IDL-IUke systems. We talked to fifty people and gathered names of about one
hundred more. From them, we identified thirteen implementations of IDL and ten implemen-
tations of IDL-Uke systems. This work convinced us that these technologies are gaining accep-
tance in a broader section of the community.

We see three Issues facing the IDL community today.

" To make IDL more accessible.

* To consider a number of language changes and extensions.
* To collect and disseminate strategies and techniques for Implementing IDL.

Until recently, the only available Introduction to the concepts of IDL was the language reference
manual. As a part of their system, UNC has written a tutorial [12] that provides a far more
coherent Introduction. In addition, the general availability of a tool (the UNC system) should aid
novices in gaining a full appreciation of the technology.

A number of people currently are working on revisions to IDL. After some years of experience
with the ideas, many changes and extensions to the language have been proposed. Most of
these are In areas outside the core language; for example, a completely revised process model
has been proposed. A new reference manual, to be published as part of the SEI book, will
incorporate some new design work based on these proposals.

The IDL workshop provided a forum In which to discuss proposed language changes. Many of
the participants presented new work, and the group provided a great deal of good technical
feedback. As work on the new design continues, a new Arpanet mailing list, lnto-IDL (see
announcement) will become the forum for this discussion.

A major reason IOL has not been used widely in the past is that strategies for implementing such
tools efficiently are not obvious. Experience has shown that there are a number of practical
engineering "tricks" that are extremely useful in building an IDL system. Discussions with the
participants at the workshop confirmed the belief that other implementors have discovered their
own sets of tricks. The implementor's guide in the SEI book will present many of these exper-
ences, tricks and strategies in a framework that will aid future implementors.

4
CMU/SEI-87-TR-47 !

T' r, ,'- " -•, - . o, , .o..'." " '. ,-'.'-" .-.".'.:

I

References
I1] Paola Giannini.

A Denotational Semantics for I DL.
1986
To be published as a Technical Report of the Computer Science Department, Carnegie-

Mellon University.

[2] Alfred S. Gilman.
VHDL - The Designer Environment.
IEEE Design & Test 3, April, 1986.

[3] G. Goos and W. A. Wulf (editors).
Diana Reference Manual.
Technical Report CMU-CS-81-101, Carnegie Mellon University, Computer Science De-

partment, March, 1981.

[4] A. N. Habermann.
The Gandalf Research Project.
Computer Science Research Review, 1978-79.

[5] David A. Lamb.

Sharing Intermediate Representations - The Interface Description Language.
Technical Report CS-83-129, Computer Science Department, Carnegie-Mellon University,

May, 1983. -%

[6] B. W. Leverett, R. G. G. Cattell, S. 0. Hobbs, J. M. Newcomer, A. H. Reiner, B. R. Schatz, ..
W. A. Wulf.
An Overview of the Production Quality Compiler-Compiler Project.
Technical Report CMU-CS-79-1 05, Carnegie Mellon University, Computer Science De-

partment, February, 1979.

[7] J. R. Nestor, W. A. Wulf, D. A. Lamb.
IDL - Interface Description Language.
Technical Report CMU-CS-81-139, Carnegie-Mellon University, Computer Science De-

partment, September, 1981.

[83 J. R. Nestor, W. A. Wulf, D. A. Lamb.
IDL - Interface Description Language.
Draft Revision 2.
1982

[9] John R. Nestor, Bhubaneswar Mishra, William L. Schedis, William A. Wulf.
Extensions to Attribute Grammars.
Technical Report TL 83-36. Tartan Laboratories, April, 1983.

[10 J. M. Newcomer, R. G. G. Cattell, P. N. Hilfinger, S. 0. Hobbs, B. W. Leverett, A.H.
Reiner, B. R. Schatz, W. A. Wulf.
POCC Implementor's Handbook.
Internal Documentation, Carnegie Mellon University, Computer Science Department, Oc- -"

tober, 1979.

[11] Richard Snodgrass and Karen Shannon.
Stppodfng Flexibe and Efficient Tool Integration. .
Softlab Document No. 25, Computer Science Department, University of North Carolina,

April, 1986.

CMU/SEI-87-TR-47 5

UI..

Irwwwrww MLVV r --1- 90 11M--T

112] W. B. Warren, J. Kicicenson, R. Snodgrass.
A Tutorial LItoduction to Using IDL.
Softiab Document No. 1 Comp~uter Science Department, University of North Carolina,

November, 1965.
[13] W. A. Wuif, D. B. Russell, and A. N. Habermann.

BLISS: a Language for Systems Programming.
Communication of the ACM 14(12). Decembe~r, 1971.

6 CM~SEI-8-TR-4

UNLIMITD.. TI QAQQTIT1
ECURITY CLASSIFICATION OF THIS PAGE XIZ A,

REPORT .rCUMENTATION PAGE
.. REPORT SECURITY CLASSIFICATIO N 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2& SECURITY CLASSIFICATION AUTHORITY 3. DOISTRIBUTIONIAVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE

S2b. OECLASSIFICATION
/ OOWNGRACING SCHE DULE DISTRIBUTION UNLIMITED

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) Aq

GMU/SEI-87-TR-47 ESD-TR-87-2 10

Ga. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION
IIfaIppIiOcbiej .)*

SOFTWARE ENGINEERING INSTITUTE SEI SEI JOINT PROGRAM OFFICE .
6c. ADDRESS (City. State and ZIP Code) 7b. ADOESS (City. S. '44 and ZIP Code) 'V
CARNEGIE MELLON UNIVERSITY ESD/XRS1
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

i
t
. NAME OF FUNOINGSISPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER r ._

ORGANIZATION (It applicable)

SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003

8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

SOFTWARE ENGINEERING INSTITUTE JPO ELEMENT No. NO. NO. NO.

PTT9Rj1RGH. PA 15213 N/A N/A N/A '

11. TITLE (Include Security Claasl'ication) -.

IDL: BACKGROUND AND STATUS
12. PERSONAL AUTHOR(S)

DONALD L. STONE, JOHN R. NESTOR

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo., Day) 15. PAGE COUNT

FINAL FROM _ TO DECEMBER 1987 12
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS WContinue on reverse if necessary and identify 0y block number)

FIELD GROUP SUB. GR. IDL, TOOL COMMUNICATION, DATA DESCRIPTION LANGUAGES

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

THIS PAPER PRESENTS AN OVERVIEW OF THE INTERFACE DESCRIPTION LANGUAGE (IDL). WE
DESCRIBE THE LANGUAGE AND ITS HISTORY. WE ALSO DISCUSS THE STATUS OF THE IDL

COMMUNITY.

°N.

20. OISTRISUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMTEDO I SAME AS RPT. 0 OTIC USERS XX UNCLASSIFIED, UNLIMITED

220. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
(include Are~a Codel

KARL SHINGLER (412) 268-7630 SEI JPO

DO FORM 1473. 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNLIMITED. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

. .. 0 .. °°%]

ILMD

